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Abstract-For cross-ply laminates micro-matrix cra(;ks in the 90° plies and inelastic deformation
in the 00 and 90' plies are two major forms of damage which afrect the long-term durability of the
materials. It is crucial to develop a mechanics based approach to incorporate both micro-cracks
and inelastic deformation of the composite materials based on the response of the 0' and 90° plies
in order to accurately predict the response of the mat~rials in service environments and to assist in
optimizing the materials system for best performance. However, such a task leads to severe math­
ematical difficulties, primarily due to the zero traction conditions on the crack surfaces, the com­
plicated constitutive relations governing the inelastic deformation and the interaction between the
cracks and the inelastic deformation, In this paper, a general framework for the analysis of cross­
ply laminates with micro-matric cracks and inelastic deformation is proposed. For this purpose
admissible stress fields are constructed which satisfy equilibrium and all boundary and interface
conditions, The principle of minimum complementary energy is utilized to derive a differential
equation for the stress function from which the stress field of the composite can be derived. The
inhomogeneous terms of the differential equation involve the inelastic strains which are loading
history dependent. The Green's function of the differential equation is then obtained. Using the
Green's function and a constitutive equation. two-dimensional stress and strain states in the com­
posite at any time are represented by an integral of the Green's function and the inelastic strains
accumulated up to that time. This new analysis takes into consideration the microcrack-microcrack
interaction, as well as the interaction between the microcracks and the inelastic defoIDlation, and
provides a point-wise variation of the stress field instead of average stress field as most of the
analytical approaches yield.

The interactions of matrix cracks and creep deformation of an eight-harness satin weave
(8HSW) Nextel61O/AIuminosilicate ceramic matrix composite is studied using the proposed model.
The predicted creep strain of the composite shows good correllation with experimental data at
different levels of temperature and stress conditions. The distribution of stresses and strains provides
important information on the response of the composite, © 1997 Elsevier Science Ltd.

INTRODUCTION

Under static or cyclic loading, composite laminates may develop intralaminar cracks which
extend along the fibers, transverse to the plies as shown in Fig. 1. One direct effect of such
cracks on laminate properties is the reduction of stiffness, There has been much interest in
this problem in recent years. Among others, Highsmith and Reifsnider (1982) treated the
problem in terms of a shear-lag analysis, Laws et al. (1983) employed a self-consistent
model to assess the stiffness reduction of a cracked lamina in a laminate. Talreja (1985)
proposed a continuous damage mechanics theory to represent the cracks with damage
parameters, A variational approach was proposed by Hashin (1985) which yields a stress
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Fig. I. A schematic representation of a cross-ply laminate with matrix cracks in the 90° plies. Here
2a is the distance of two cracks between which the stresses and strains are to be solved. It should be

noted at the crack spacing need not be uniform.

field more accurate than the simple shear-lag analysis. Furthermore, Narin (1989) has
shown that a better analytical result by variational approach cannot be obtained. One of
the advantages of the variational solution is that it accurately includes transverse stresses
and therefore distinguishes between [Om/90nL and [90n/OmL laminates. The shear-lag analyses
(Parvizi et al. 1978; Bailey et al. 1979; Highsmith and Reifsnider, 1982; Flaggs, 1985) do
not distinguish between [Om/90nL and [90n/OmL laminates. McCartney (1992) has developed
two analytical methods for cross-ply laminate containing transverse cracks under the
framework of the 2-D and 3-D elasticity. It should be noted that inelastic deformation of
the matrix and fiber materials is not considered in the above analyses.

Inelastic deformation such as creep deformation is another important phenome:non
which has direct impact on the performance of the composite materials, especially for
structures intended for high temperature applications such as advanced turbine engines.
During elastic deformation of the composite materials, the constituent phases are homo­
geneous and their properties are known constants. This simplifies modeling to a great ex.tent
because the local stress and strain fields, as well as their averages are linearly related by the
constant stiffness and compliance tensors. Overall properties can be evaluated from the
phase field averages that can be found from solutions of certain inclusion problems in a
representative volume of the aggregate. When at least one of the phases deforms inelas­
tically, its local properties depend on the deformation history, and the phase is no longer
homogeneous. Numerical analysis becomes nonlinear and must generally be solved in an
incremental manner which can significantly increase the computation effort. A variety of
techniques have been invoked to deal with these issues. Most computationally efficient is
to treat the inelastic composite as an effective homogeneous medium which follows an
anisotropic inelastic constitutive law (e.g., Krempl and Hong, 1989). An alternative is to
generate estimates of the stress and strain states in both the fiber and matrix. The simplest
of these circumvent the difficulty of estimating stress, strain, and effective property dis­
tributions throughout the inelastic phase by assuming that the local fields are uniform
(Dvorak and Bahei-EI-Din, 1982). Other models approximate in various ways the actual
nonuniform fields (Aboudi, 1991 ; Coker et al., 1993; Kroupa et al., 1996), while at lleast
one such approach also provides upper and lower bounds on certain instantaneous stiffness
and compliance coefficients (Teply and Dvorak, 1988). An overview of such techniques is
given by Dvorak (1991).

It is crucial to develop a mechanics based approach to incorporate both microstructural
damage (crack in the present case) and inelastic deformation of composite materials based
on the response of the 0° and 90° plies in order to accurately predict the response of the
material in service environments and to assist in optimizing the materials system for the
best performance. However, such a task leads to severe mathematical difficulties, primarily
due to the zero traction conditions on the crack surfaces, the complicated constitutive
relations governing the inelastic deformation and the interaction between the cracks and
inelastic deformation. In this paper, a variational approach is proposed to establish a general
framework for analyzing composites with both matrix cracks and inelastic deformation. The
response of an eight-harness satin weave (8HSW) Nextel 610/Aluminosilicate ceramic
matrix composite is analyzed using the proposed model. An approximation to the eight­
harness satin weave (8HSW) is made, following the mosaic model (Ishikawa and Chou,
1983) which treats woven composites as cross-ply laminates. Such a treatment provides a
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good representation of stresses and strains away from the region where the fibers cross,
and has been used previously by Zuiker (1996).

VARIATION FORMULATION FOR COMPOSITES WITH MATRIX CRACKS AND
INELASTIC DEFORMATION

An admissible stress field for cross-ply laminate under tension with cracks in 90° plies,
Fig. 1, is constructed by using the approach suggested by Hasin (1985) for a cracked cross­
ply with no inelastic deformation. It is assumed that axx is a function of x only, and
ayz = axy = O. The ramifications of the assumption are discussed in Appendix A. For now
is suffices to note that all shear-lag analyses make the same assumption along with a host
of additional assumptions (Narin, 1989). The systematic integration of the equations of
equilibrium, taking into account traction continuity and boundary conditions defines an
admissible stress field in terms of an unknown function, ¢(x), as follows

a\9t) = a~~O) = a;:~')[l-¢(x)]

a(O") = a(O") = a(O") + ~ a(90") -I.. (x)
1 1 xx xxO A xxO "f'

a(O') = a(O') = ~a(90··)-I..'(x)(h-·7)
13 xz A xxO 0/ •. ,

(90") _ (90''') _ (90")
a 22 - ayy - ayyO

a(90") = a(~o·) = ~a(90')'''"(x)[ht _Z2]
3 3 z~ 2 xxO lV I

(1)

where superscripts 0° and 900 represent the OC and 90° plies, respectively, prime indicates
derivative with respect to x, and t[ is the thickness of one 90° ply, and t 2 is the thickness of
one 0° ply. The stresses in undamaged (no cracks or inelastic deformation) and damaged
laminates are denoted by ao and a. For instance, a~~r;;) and a~~o') denote the x direction
normal stresses of the 90 0 plies in the undamaged and damaged laminates, respectively.
The stress free conditions, a~~o') = a;;O") = 0, on the crack surfaces, x = ±a, lead to the
boundary conditions for function, ¢(x),

¢(±a) = 1,
d¢
dx(±a) = 0 (2)

where a is the half of the distance between the two cracks being analyzed as shown in Fig.
1. Equations (1) and (2) represent the stress field between two cracks at x = a and x = - a.
Between cracks located away from the origin, the stress fields can still be defined in the
form of eqn (1), with the boundary condition revised to

d¢
¢(crack faces) = 1, dxlcrack faces) = O.

Therefore, the matrix crack spacing need not be uniform.
The complementary energy of the composite is given by

(2')
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(3)

where Siikb rtii' I'1T are the compliance tensor, thermal expansion coefficient tensor and the
temperature difference between the current temperature and the stress free temperature,
respectively; pI! represents the contribution of the inelastic strain to the complementary
energy of the system, which will be discussed in some detail later.

The first two terms in r for the region between two micro-cracks; i.e., for the region
-a < x < a and -h < z < h are evaluated by substituting the stress expressions in egn (I)
into egn (3). Therefore,

¢2 vr(ht j _Z2)¢¢" (ht, -z2f¢"¢" Z2¢'¢'
+ Er + E r + 4Er + --c;;-

-2rtr I'1T¢+rt. r I'1T(ht j _Z2)¢"]

+( (90l)2fa d fhd~[2¢ _vA(h--Z)2¢"
(JxxO x"' AE AE

-a t l A A

where

is the complementary energy of the laminate without any damage or inelastic deformation.
Let ~ = xlt] and the expression for r can be simplified as

r = rO+((Ji~~))2(td2 fp [C j ¢2+C2¢¢"+C3 (¢")2+C4 (¢')2

--2(rtr-C(A) I'1T¢+Cs¢"] d,;+ril! (4)

where p = alt], EA , En GA , Gr, VA' Vn C(A, C(:r, are the effective axial and transverse Young's
moduli, shear moduli, Poisson's ratios, and thermal expansion coefficients of the uni­
directional composite, respectively, and

2+ 1 2
C3 = -o~(32 + 12X+8)

6 E T
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The applied load on the composite is shown in terms of stress as O"applied in the above
expression, and Eo is the Young's modulus of the undamaged cross-ply laminate in the 0°
ply fiber direction. The derivation of eqn (4) is similar to that given by Narin (1989) for a
cross-ply laminate without inelastic deformation.

The first order variation of the functional r, br, is found using eqn (4)

br = (0"~:~»2(tl)2 Ip [2C I ¢b¢+ C2(¢b¢" +b¢¢")+2C3¢" b¢" +2C4 ¢' b¢'

- 2(lXr-IXA)!1Tb¢ + Cs b¢"] d~+brin
•

The above equation is simplified through integration by parts and use of the boundary
condition in eqn (2)

where p = (C2- C4)/C3and q = C1/C3.
The contribution of the inelastic strain, e;'), to the variation of the total complimentary

energy is given as

+ fa dx fh dz {eif[O) 150"\°1 ) + e~"~O') bO"j03') + 2eif~OC) bO"\O;')}
-a t]

+2eif~90)bW'(x)z]}

+O"S:~')fa dxrdz {e;njO) 15 [t]+eIN°) 15 [;A¢"(X)(h-Z)2]

+2e if1°) D¢'(X)(h-Z)]}

Let ~ = xlt l and ill = zit), we have

bPn = (td20"~:~') Ip {AI(~)b¢(O+A2(~)b¢"(~)+A3(~)b¢'(~)} d~

+(tl)20"~~) Ip {BI(~)b¢(~)+B2(~)b¢fI(~)+B3(~)b¢'(~)}d~
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= (tl)2()"~~~") fp {A 1(()+ d
2;;2(O -- dA;iO}b¢(Od~

+(t1)2()"1~g') J:p {BI(()+ d2:;2(~2_ dd?)}b¢(~)d~ (6)

(7)

(8)

(9)

(10)

(11)

(12)

Substituting eqn (6) into eqn (5) and using the condition br = 0, one obtains

which leads to the governing equation for the function ¢(O

where

(13)

is related to the stress function, ¢(O, and ~ through the inelastic strains dj(90-) and f::j(O).

The boundary conditions for eqn (13) is, from eqn (2),

d¢(~)1
¢(~) I~=±p = I, (if- ~~±p = O. (14)
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CONSTITUTIVE EQUATIONS

The inhomogeneous term, F(~), in eqn (13) is related to the inelastic strains of the
laminate which are loading history dependent. This section deals with the constitutive
relationships which describe such strains using the response of the 0° and 90° plies. Without
losing generality, creep deformation is used here to demonstrate the proposed model. Any
other constitutive model can be used as well.

A one dimensional creep law is gven by Dorn's law (Mukherjee et al., 1969)

'C {Ierl}" Gb { Q }e = A G kT Do exp - RT (15)

where t C and er are the creep rate and stress of the material, A and n are constants that can be
determined experimentally, G is the shear modulus, b is the Burger's vector, k is Boltzmann's
constant, Do is a pre-exponential constant, Q is the activation energy for self-diffusion, and
T is the temperature.

For two-dimensional and three-dimensional problems, the Prandtl-Reuss relations
can be used for computing the creep increments. Thus the equivalent creep strain rate is
written as

{
er

efJ

1
n

Gb {Q }tc.eff = A ~ - D exp --
G kT 0 RT

where ereff
, is the von Mises' effective stress which is defined as

(16)

(17)

and ert is the deviatoric stress tensor. Then, using the Prandtl~Reuss flow law, the creep
strain rate tensor is defined as

(18)

Note that

Equations (16) and (18) can be written in incremental forms

{
er

efl
}" Gb {Q }i'1ec

,efl = A ~ .-. D exp - - i'1t
G kT 0 RT

Therefore, the total creep strain at the instant, t+i'1t, is

(19)

(21)

(22)

(23)
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where £~}o is the creep strain at time t, ae.il and at are the effective stress and deviatoric stress
at time t +!it; and w is independent of stress and is defined as

w = ~ A (]-)" Gl~ D exp {_lL}
2 G kT 0 RT

(24)

where T is the temperature at time t+Lit.
The constitutive law in eqns (16)-(23) are for isotropic materials. To apply them to a

transversely isotropic lamina, different values of exponents are used

(25)

(26)

where nm and Him are the parameters for creep deformation in the 90° plies obtained from a
creep test ofa unidirectional lamina with loading transverse to the fiber direction. Similarly,
nf and w! are the parameters for the 0° plies obtained from a creep test of a unidirectional
lamina with loading along the fiber direction. It should be noted that this formulation in
its current form produces isotropic creep response in each ply. Although this is not an
accurate characterization for the unidirectional ply under arbitrary loading, it is sufficient
for the cases considered here wherein the laminate is loaded only in the 0° fiber direction.
The effect of the longitudinal stress in the 90° plies wil1 not be accurately accounted for in
this approximation. However, for the case of 0° loading, that stress is smal1 in comparison
to those in the loading direction and is expected to have negligible effect on the overal1
composite response. An alternative approach is, of course, to introduce an anisotropic
creep formulation.

When creep is the only source of inelastic deformation, ett90
) and £;j(O ) in eqns (7)­

(12) are replaced by the creep strains lOW') and e::yn, respectively. The creep strains are
related to stresses in each ply which are expressed in terms of the stress function, 4>(,;), as
well as ~ and OJ. The expressions of stresses are obtained from eqn (1) and the relationships
~ = x/t] and OJ = z!t] as

a\9t) = a~~%)[l- 4>(~))

a(O ') = aWl +. ~ a(90) A)(l')
1 I xxO A nO 'f "

(900) _ (90) d4>(O
a l3 - (JnO OJ d~

(27)

Stresses used in eqns (17)--(26) are written below as functions of ~ and OJ
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a* (90') = a* (90')(i' OJ) = a(90')(i' w)_~a(90)
22 22 S, 22 1.:" 3:xa

13"1190' = a"ff, 90' (~, W)

= G[(arl (90
0

»)2 + (at2 (90'»)2 + (a~3 (90
C

))2 + (ar3 (90
0

))2]) 0.5

a* W) = a* (0) (i' w) = a(O) (i' w) -- ~ aW )11 11 S, 11 S, 3 ao:

a* (0') = a* (O")(i' w) = a(O')(i' w)·_~a(OO)
22 22 S, 22~, 3 a:x

a* W) = a* (0') (i' w) = a(O) (i' w) ..- ~ aW )
33 33 '" 33 ,>, 3""

* (0') _ W) _ ~ (90') d¢(O
at3 - a33 (~,w) - Ie a.nO d~ -(hltl-w)

aerf,O- = aejl:O-(~, W)

= G[(ar] (0'))2 + (at2 W)) + (a~3 (0»)2 + (ar3 W))2]) 0.5.

lIS

(28)

Using eqns (25), (26) and (28), the inelastic strains (creep strains in the present case),
sfpo·) and sf?') are expressed in terms of w, ~ and ¢(~). The inhomogeneous term F(O of
the governing equation, eqn (13), is then expressed in terms of ~ and ¢(~) using eqns (7)-­
(12). The problem is therefore converted to the nonlinear differential equation, eqn (13),
which we proceed to solve by constructing the Green's function of the linear homogeneous
equation.

THE GREEN'S FUNCTION

The proposed problem of analyzing a laminate with cracked 90° plies and inelastic
strains is reduced to solving eqn (13) for the stress function, ¢(O. Since the inhomogeneous
term, F(O, in eqn (13) is a function of inelastic strain which depends on time and stress
history, an incremental analysis is needed to determine the stress function, ¢(O, during the
loading and unloading process. For this purpose the Green's function for the system is
constructed. We seek the solution of the following boundary value problem

(29)

(30)

where b(~ -I]) is the Dirac delta function.
The solution to eqn (29) with the boundary conditions in eqn (30) can be obtained by

the following heuristic procedure. Let ¢1 and ¢2 be two general solutions of the homo­
geneous equation
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(31 )

where rf>, satisfies the boundary conditions at ~ = - p and rf>2 satisfies the boundary con­
ditions at ~ = p, i.e.,

If rf>, and rf>2 also satisfy the conditions at ~ = 11,

drf>,m\ = drf>2ml
d~ ~~~ d~ ~=~

d3rf>1;~)I.. = d3rf>\ml -1
d~ (~~ d~ (=~

(32)

then

is the Green's function for the problem. It is not difficult to show that the G(~, 11) constructed
above satisfies eqns (29) and (30), and therefore, is the Green's function for the problem.
First, G(~,rf) satisfies the boundary conditions at ~ = -p and ~ = p since rf>lm and
rf>i~) satisfy the boundary conditions at ~ = - p and ~ = p, respectively. Secondly, G(~., 11)
satisfies the homogeneous equation corresponding to eqn (29) for any ~ of- rf because both
rf>l(O and rf>2(~) are solutions of the homogeneous equation. Finally, using condition in e:qn
(32), eqn (29) is integrated to obtain

The limit, limit,,_oS~:":::qG(~,rf)d~, in the above equation, is equal to zero since G(~,11) is
continuous. The above procedure of determining the Green's function in eqn (29) is an
extension of the approach described by Stakgold (1970).

It can be verified that rf>1 and rf>2 take the following form

rf>l(O = -b1Ul(O-b2U2(O

rf>2m = b3U3(~) +b2U4m (33)

where the unknown constants bj, b2, b3 and b4 (the:y are actually related to 11) are to be
determined from the matching conditions at ~ = 11, e:qn (32). Functions Ul(~) and U2(~) are
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the solutions for the homogeneous equation, eqn (31), and satisfy the homogeneous bound­
ary conditions at ~ = - p, i.e.,

Similarly, U3(~) and U4(¢) are also the solutions of eqn (31) and satisfy the homogeneous
boundary conditions at e = p. The forms of UI(~)' UZ(~), U3(¢) and U4(~) depend on the
values ofp and q as discussed in Appendix B. When (p2/4) -q < 0 (see eqns (B7) and (B8»

UJ CO = sinh [a«( +p)] sin [13«( +p)]

U2 CO = cosh [a(~+p)] sin [f3(~ +p)] -- ~sinh [a(~+p)] cos [13«( +p)]
a

U3 (~) = sinh [a«( - p)] sin [f3(~ - p)]

U4CO = cosh [a«( - p)] sin [f3(~ - p)] - ~ sinh [,:x«( - p)] cos [f3(~ - p)] (34)
a

where

_J -p+2Jq d n _ .jp+2Jq
rl- 2 an 1'- 2 . (35)

Derivation of eqns (34) and (35) as well as the expressions of UI(O, U2(~), U3(O and U4(¢)
for other values of p and q can be found in Appendix B.

Substituting eqns (33), (34) and (35) into eqn (32), one obtains the following condition
to determine the constants bj, b2, b3 and b4

[

Uj (I]) U2(1])

u; (1J) u;(1J)

u'{ (1J) u~ (IJ)

U'" I (I]) u'" 2 (1J)

U3(1J)

U; (I])

uHI])

u'" 3 (1J)

(36)

where prime denotes the derivative with respect to 1J. By solving the above system of
algebraic equations for bj, b2, b3 and b4, one obtains

b[ = b [ (I]) = - W[U2(1]), U3(1]), U4 (I])]/ W[u j (IJ), U2 (IJ), U3 (IJ), U4(1J)]

b2 = b2 (1J) = W[uJ (1]), U3(IJ), U4(11)]/W[UI (1]), uAIJ), U3(1]), U4(1])]

b3 = b3(1]) = - W[UI (1]), u2(IJ), U4(1])]/W[UI (1]), U2(1]), U3(1]), U4(1])]

b4 = b4(1]) = W[UI (1]), U2(1]), U3(IJ)J/W[UI (1J), u2 (1]), U3(1]), U4(1])] (37)

where W[... ] is the Wronskian of the function involved. For example,

U3 (1])

u;(IJ)

u~(IJ)

u'"3 (1J)

U4 (I]) ]
U~(IJ)

U~(IJ)

U"'4(1J)

(38)

and
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li3 (ry)

U'l(l)

U~ (I))

U4(1))
U~ (I) , etc

u~ (I)

where det denotes the determinant of a matrix. From the property of the Green's function
the solution of eqn (13) is then given as

¢(f,) = ¢oW + fp F(I)G(~, I)) dry (39)

where ¢o(~) is the solution of the homogeneous equation (with F(~) = 0 in eqn (13» under
the boundary condition shown in eqn (14), and is given as, for (p2j4)_q < 0 (see eqn (B9»

¢oW = 2(fJ sinh [ap~ cos [fJp] +:x c~sh rap] sin [f3p]) cosh [:x~] cos [fJ~)
13 smh [2ap) +a sm [2fJp)

2(13 cosh rap] sin [f3p] - cx sinh [cxp] cos (f3p]). );. );
+ R . h [2] . ("'13] smh [a",) sm [fJ",]·

I-' sm ap + cx sm •. p
(40)

Derivation of eqn (40) as well as the expressions of (Po(~) for other values of p and q can
be found in Appendix B.

PROCEDURE FOR SOLUTION

The procedure for solving the stress function, ¢(~), is as follows:

(I) At the start of the first time interval, s~j is zero. From eqns (7)-(13), one finds that

The stress function in eqn (13) with the above inhomogeneous term, F(~), is constructed
as

(
(a - a ) Ll~ (a - cx ) LlT

¢(~) = 1- T c: )¢o(O+ T C: .
(2) The stress components are then derived from eqns (27) and (28) using the stress

function obtained above. The approximation of stress is then substituted into eqns (25)
and (26) to obtain the incremental creep strains, Lll;f?O) and Lll;~?).

(3) The incremental creep strains, Lli>f?O) and Lll;~io'), are added to the creep strains
accumulated during all previous steps, l;ij(90') and s~jW), to obtain the total creep strains,
i.e. s~?o') = l;ij(90') + Lll;~?o') and s~r) =, s~j(o') + Lls~iO'). For the first iteration step
l;~;<90') = LlS~rl), and l;~;(o') ,= LlS~)O) because Sij(90) and sij(O') are zero.

(4) The above creep strain is substituted into eqns (7)-(13) to obtain A,(~), BI(~)' etc.
and then F(~). The stress function is then obtained as

(41)

(5) The creep strain at the beginning of next time interval is known and is equal to
the accumulated incremental strains up to the time interval. The procedure for calculating
the stress function, stresses and displacements for the other time interval is the same as in
steps 2 to 4.



E,

Analysis of cross-ply laminates

Table I. Material properties of the unidirectional laminate

V,

119

109 GPa 14.6 GPa 6.26 GPa 6.18 GPa 0.1878 0.236

RESULTS

As an example of the utility of the method, we will model the creep response of the
eight-harness satin weave (8HSW) Nextel 61O(Aluminosilicate ceramic matrix composite
which has been experimentally studied by Lee et al. (1996). Creep tests have been conducted
at 1000GC and 1100°C at stresses ranging from 50 MPa to 135 MPa. The ply properties are
given in Table 1. The creep behavior of the OC plies is dominated by the fibers and the creep
behavior of 90° plies is dominated by the matrix. Therefore, nl in the constitutive model,
eqn (23), is taken as 3 after Wilson et al. (1993) for that of the fibers, and nm is taken as 4
after Zuiker (1996) for that of the matrix. Due to the Jack of experimental data on creep of
the matrix it is assumed that wl= Wm = 2.13821 X 10- 14 using the data on total strain at
time equal to 1000 seconds at the load level 01'75 MPa from the creep tests on the composite
(Lee et al., 1996). The same WI and Wm are used in the prediction of the curve for the load
level of 50 MPa. Figure 2 shows the comparison of the total strain of the composite at
IIOOGC under two loads levels, O'applied = 50 MPa and O'applied = 75 MPa. Although Fig. 2
shows that the predicted creep strains agree with experiments at different stress levels
reasonably well, it should not be considered to be the definitive verification of the proposed
model due to the lack of experimental data of the matrix.

The creep strains, average in the z-direction, of the 0° and 90° plies, after 7200 seconds,
are shown in Fig. 3 as functions of the distance from the crack face of two adjacent matrix
cracks, one at x(t l = - 2, the other at x(t] = 2. The crack spacing a is chosen to be 2t l , in
agreement with observations of processing induced cracks in the composite (Lee et al.,
1996), where t l is the thickness of one 90° ply. The applied stress and temperature on the
composite are 75 MPa and 1100°C, respectively. As shown in Fig. 3, the creep strain of the
90° plies is negligibly small when compared to that of the 0' plies. Since the total strains of
the 0° and 90° plies are equal to maintain the global deformation compatibility, the
deformation caused by crack opening of the 900 plies is considerable. For both 90° and 0°
plies, the maximum creep strain occurs at x(t, == -2 and x(t! = 2, the crack surface,
indicating the influence of the crack on creep deformation is most significant on crack
surface.

A three-dimensional distribution of axial creep strains" e~! or e~,,, in the 0° plies after
12,000 seconds is shown in Fig. 4 where z and x are the directions along the thickness
direction and axial direction (x-direction) as shown in Fig. I. Focusing the attention to the
distribution of the creep strain of the 0° plies on the planes where z is constant, one finds
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Fig. 2. Comparison of predicted strains with experimental data.
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Fig. 4. Axial creep strains, S~ 1 or s';" in the 0' plies.

that on z = I where 900 and 0° plies meet, the creep strain exhibits largest variation along
the axial direction. This indicates that on z = I, the effect of the cracks is most significant
to the 0° plies since the variation of the cre:ep strain in the 0° plies is a direct result of the
cracks in the 90° plies. On other planes where z is constant, as the value of z increases, the
material is further away from the cracked 900 plies, and the effect of the cracks becomes less
significant. Hence, the variation of the cre(:p strain becomes smaller. A three-dimensional
distribution of axial creep strains, £\ I or £~n in the 90° plies after 12,000 seconds is shown
in Fig. 5. One advantage of the present analysis is the ability to obtain stress and strain
variations along both axial and thickness directions rather than average stress and strain.

The normal stresses along the loading direction in the 0° plies (i.e., rr~O,)) and 90' plies
(i.e., rri:°')), under an applied load of75 MPa after 12,000 seconds at a constant temperature
of 1100°C, are shown in Fig. 6. These normal stresses have no dependence on z, and are
normalized by rr~~~O), the stress of the 90° plies from the linear classic laminate analysis
when no matrix cracks and inelastic deformation are considered. On the crack surface,
x/f1 = -2 and X/f) = 2, rri:°

O

) is zero and cr~~') arrives at its maximum value to balance the
applied load. When moving to the center of the two cracks, rri:°') beings to increase and
rr~~) starts to decrease. The maximum value of rr~/)) is about 40% of the normal stress in
the 90° plies in the undamaged composite. Furthermore, due to the relatively large creep
strain in the OC ply, relaxation in the 0° ply occurs which reduces the magnitude of the stress
as compared to the elastic stress also shown in Fig. 6. The elastic stress is the stress of the
composite at time equal to zero when cracks exist in the 90° plies, but no creep deformation
has occurred. The stress in the 90° plies increases as creep strain develops. The stress changes
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in the 00 and 900 plies, and the stress transfer from between these two plies are expected to
be more pronounced over a longer period of time.

The transverse shear stresses of the 900 plies, (j~~O'), is a function along the thickness
and axial directions, and is shown in Fig. 7. The shear stress is zero at z = adue to symmetry
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2 0 X/tl
Fig. 8. 0";;0) as a function along the thickness and axial directions.

and at the crack surface due to the traction free condition. The normal stress of the 90°
plies, ()~~OO), is shown in Fig. 8.

CONCLUSION

A general framework for the analysis of cross-ply laminates with matrix cracks and
inelastic deformation is proposed. The stress and strain states in the composites are rep­
resented through a simple integral of the Green's function and the inelastic strains accumu­
lated in the previous time steps. This new analysis takes into consideration the crack­
crack interaction, as well as crack-inelastic deformation interaction. The method predicts
variation in the stress and strain fields between cracks. In addition, the predicted stress field
satisfies equilibrium and all boundary and interface conditions. The compatibility equations
of continuum are satisfied approximately by minimizing the complementary energy of the
composite material. One possible improvement on accuracy one can make to the present
analysis is to enlarge the admissible stress field for the variational principle. Such an attempt
will most likely complicate the analysis significantly and eliminate the possibility of an
analytical or semi-analytical solution.

The present model has been utilized to study the interactions of matrix cracks and
creep deformation in a ceramic matrix composite. The results show important variations
of stress and strain fields along both thickness and axial directions. The predicted creep
strain of the composite shows good correlation with experimental data at different levels of
temperature and stress conditions.

We still should consider the consequences of the one assumption that the x direction
normal stresses in each ply are independent of z. With this assumption, we miss microcrack
tip stress concentration effects. At high loads the tips of microcracks can lead to delami­
nation between the 0° and 90° plies. The prediction of creep strains and stresses at near the
crack tips is not accurate, and should be interpreted as the average value through the
thickness, z, direction. It should be pointed out, however, that many analytical or semi­
analytical models on composite materials involving inelastic deformation are based on
Eshelby's concept of equivalent inclusion which gives only average stresses and strains in
the whole matrix material. These models have been shown to represent the average total
strain including creep strain of the composite reasonably close to experimental measure­
ments (Mura, 1987; Taya and Mori, 1987; Zhu and Weng, 1990). The model proposed in
this paper is suitable for a cross-ply laminate only, but it represents an improvement to the
equivalent inclusion approach in regards to local stress and strain fields.
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APPENDIX A

McCartney (1992) has developed two new analytical methods that can predict the stress transfer between the
0° and 900 plies in a cross-ply laminate containing transverse cracks using the general framework of 2-D and 3-D
elasticity. The first method is based on a 2-D model which assumes that generalized plane strain condition prevails
in the XZ plane. The theoretical approach retains all relevant stress and displacement components, and satisfy
exactly the equilibrium equation, the interface conditions and other conditions involving stresses. The stress-­
strain relations are satisfied either exactly or in an averaged sense. The: second analytical method extends the 2-D
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model so that it can apply to 3-D problems which arise, for example when edge effects or orthogonal cracking are
taken into account.

In McCartney's 2-D model, the displacements are !I = !I(x, z), X = Ay, w = w(x, z). Here A is a constant. It
follows from the displacements that the shear stresses a" and ax, are zero. McCartney (1992) has shown that the
2-D model, when the axial stress in 0 and 90 plies are assumed independent of the through-thickness coordinate,
z, are equivalent to the Euler equation from Hashin's variational analysis. Therefore, eqn (I) represents a gem:ral
stress field in the framework of the generalized plane strain condition with addition of one assumption that the
an is a function of x only.

Equation (I) can be modified to introduce a 3-D stress repre,sentation with nonzero a y, and a xy , using the
approach outlined by Hashin (1987). The method proposed in this paper can still be applied without much change.

APPENDIX B

In this appendix, the general solution of eqn (31) is discussed., and the expressions of !I,(~), !/,(;), !I,(~) and
!/4(~)' used in eqn (33) for the construction of the Green's function, are provided.

Equation (31) becomes

k'+pk' +qk = 0

if 1J(~) is assumed to be in the form of ek<. The roots for eqn (BI) are

Therefore, the general solution of eqn (31) is

(BI)

(B2)

(B3)

where C" C" C, and C4 are unknown constants to be determined from the boundary conditions. Since k,. k2, k,
and k 4 may be complex numbers, it is necessary to change the form of eqn (B3) so that the general solution is
expressed in terms of real numbers for various valUl:s of p and. q determined from the material and geometry
properties of the laminate. The parameter q is larger than zero based on its definition in eqn (5).

(I) (p'j4)-q < O.

In this case, k" k" k, and k4 can be written in terms of two real numbers, IX and fJ

where

(B4)

IX=FP+2:Jq
2

The general solution of eqn (31) is then expressed as

and fJ =JP+2]q2 . (B5)

1J(fJ) = C, sinh (IX~] sin [t!~] + C, cosh (IX~] cos [fJ~] + C3sinh (IX~] cos (fJ~] + C4cosh [~~] sin [P~]· (B6)

Two particular solutions satisfying the homogeneous boundary condition at (= - p, i.e.,

" d1J(OI
1J(c;)I,~ _p == 0, ---;jf- (~_p = 0,

are constructed from eqn (B6) as

4>(~) = !/, (~) == sinh (IX(~ +p)] sin [fJ(~ +p)]

4>«() = !/,m == cosh (IX«(+ p)] sin [fJ(U p)] - f sinh (IX(~+ p)] cos (fJ«(+ pl].
IX

Similarly, two particular solutions satisfying homogeneous boundary conditions at ( = p, i.e.,

(B7)
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rP(~) = u,(~) = sinh[a(~-p)]sin[Ii(~-p)]

rPm = U4m = cosh [a(~ - p)] sin [Ii(~ - p)] - ~sinh [a(~ - p)] cos [Ii(~- p)].
a

125

(B8)

The functions shown in eqns (B7) and (B8) are used in eqn (33) to construct the Green's function of the problem.
The function rPom used in eqns (39) and (41) which satisfies eqn (31) and boundary conditions (14) is

determined from the general solution, eqn (B6), as

rP m = 2(lisinh[ap] cos [lip] +acosh [ap] sin [lip]) h[~] [Ii~]
o Ii sinh [2ap] +exsin [21ip] cos ex cos

2(licosh[ap] sin [lip]-exsinh [exp] cos [lip]). [J']' [R"]
+ R . h [2] . [2R] smh a~ sm f'\, .f'sm ap +asm f'p

(B9)

Equation (B9) is identical to that by Hashin (1985). It should be pointed out that the expressions of ex and Ii
used here (eqn (B5») is more general which also applies to the case when p is larger than zero. When p is less than
zero, eqn (B5) is equivalent to the expressions of ex and Ii given by Hashin (1985).

(II) (p'/4) -q > O.

(11.1) (p2/4) -q > 0 and p > O.
Since q is positive, both

are negative in this case. Therefore, the roots k b k2 , k, and k4 can be written as

where

ex=J~-J~-q and p=J~+)~-q.

The general solution of eqn (31) is then expressed as

The functions, Ul(~)' U,(~), U,(~) and U4(~) used in eqn (33) are

ex
rPm = Ulm = sin [a(Up)]- psinL{j'(~+p)]

rPm = U2(~) = cos[ex(~+p)]-cos[Ii(;+p)]

a
rPm = u,m = sin[ex(~-p)]- psin[p(;-p)]

rP(~) =U4m =cos[ex(~-p)]-cos[Ii(,;-p)]·

(BIO)

(BII)

(BI2)

(BI3)

The function rPo(~) used in eqns (39) and (41) which satisfies eqn (31) and boundary conditions (14) is
determined from the general solution, eqn (BI2), as

(11.2) (p'/4) - q > 0 and p < O.

Both

ex sin [exp] cos [Ii~] -Ii sin [lip] cos [ex~]

ex sin [exp] cos [lip] -Ii sin [lip] cos [exp] .
(BI4)
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-p {p-'--- -p ~
2+ F4-~q and 2- ~ 4"-q

are positive in this case. The roots kJ, k 2, k3 and k4 can be written as

where

I_
p ~ _ !-p Ji-

rx = ~ 2 + ~ 4" -q and (3 - 'J 2 + 4 q.

The general solution of eqn (31) is then expressed as

The functions, u,(~), U2(1;), U3(~) and u4(1;) are

~

4>(1;) = u'(1;) = sinh[ex(8+ p)]-fjsinh[{3(l;+p)]

4>(1;) = U2 (I;) = cosh [~(I;+p)]-cosh [f3(1; + p)]

rx
4>(1;) = u] (I;) = sinh [ex(1; - p)] - r inh [(3(1; - p)]

4>(1;) = U4(1;) = cosh [rx(l;- p)]-cosh [(3(1; - p)].

(BIS)

(BI6)

(BI7)

(BI8)

The function 4>0(1;) used in eqns (39) and (41) which satisfies eqn (31) and boundary conditions (14) are
determined from the general solution, eqn (BI8), as

rx sinh [~p] cosh [{11;] - {3 sinh [{1p] cosh [rxl;]
4>0(1;) =~ sinh [rxp] cosh [{1p] - {1 sinh [f3p] cosh [~p]'

(III) (p2/4)_q = O.

(IIU) (p'j4) - q = 0, p < o.

The roots kJ, k" k] and k4 can be written as

The general solution of eqn (31) is then expressed as

The functions, u,(I;), u,(I;), u](1;) and u.(¢) are

4>(1;) = u,(1;) =(¢+p)sinh[rx(l;+p)]

4>(1;) = U2(1;) = sinh[rx(¢+p)]-rx(l;+p)cosh[rx(l;+p)]

4>(1;) = u3(1;) =(¢~p)SiIlh[rx(l;-p)]

4>(1;) = U4(1;) = sinh [rx(1; - p)]-rx(~ - p) cosh [~(¢ - p)].

(BI9)

(B20)

(B21)

(B22)

The functions 4>0(~) used in eqns (39) and (41) which satisfies eqn (31) and boundary conditions (14) is
determined from the general solution, eqn (B21) as

4>0(1;) = 2 rxp cosh [rxp] + sinh [~p] cosh [~I;] -2 ~ sinh [rxp] I; sinh [rxl;].
2exp + smh [2rxp] 2rxp + smh [2rxp]

(III.2) (p'j4) - q = 0, p > O.

The roots kJ, k 2 , k] and k4 can be written as

(B23)
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FP.
k l =k'="jT=a/,

The general solution of egn (31) is then expressed as

(B24)

The functions, UI(~)' u,(O, u3(0 and U4(~) are

4>(0 = U, (0 = (~+ p) sin [aa + p)J

4>(~) = 11,(0 = sin[a(~+p)J--IX(~+p)cos[IX(~+p)]

4>(0 =U3(~) =(~-p)sin[IX(~-p)J

¢(~) = U4(~) = sin[IX(~-p)]--IX(~-p)cos[IX(~-p)].

(B25)

(B26)

The function 4>0(~) used in egns (39) and (41) which satisfies egn (31) and boundary conditions (14) is
determined from the general solution, egn (B25), as

; _ IXPCOS [lXp] +sin [lXp] !' ~in[lXp] _.
4>0(') - 2 2 . [2 ] cos [lXsi+22 . [2 ]ssm[IX~].

~+~ ~ ~+~ ~
(B27)


